Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Physiol ; 602(7): 1385-1404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513002

RESUMO

The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Contração Isométrica/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia
2.
Brain ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501612

RESUMO

The paralysis of the muscles controlling the hand dramatically limits the quality of life of individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI individuals (C5-C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with residual neural pathways. In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of motor neuron changes after the injury and has the potential to promote movement restoration when integrated with assistive devices.

3.
J Physiol ; 602(8): 1759-1774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502567

RESUMO

5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.


Assuntos
Receptores 5-HT2 de Serotonina , Serotonina , Adulto , Humanos , Serotonina/farmacologia , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia
4.
J Neural Eng ; 21(2)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525843

RESUMO

Objective.Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscles through electrodes placed on the skin. sEMG is the state-of-the-art method used to control active upper limb prostheses because of the association between its amplitude and the neural drive sent from the spinal cord to muscles. However, accurately estimating the kinematics of a freely moving human hand using sEMG from extrinsic hand muscles remains a challenge. Deep learning has been recently successfully applied to this problem by mapping raw sEMG signals into kinematics. Nonetheless, the optimal number of EMG signals and the type of pre-processing that would maximize performance have not been investigated yet.Approach.Here, we analyze the impact of these factors on the accuracy in kinematics estimates. For this purpose, we processed monopolar sEMG signals that were originally recorded from 320 electrodes over the forearm muscles of 13 subjects. We used a previously published deep learning method that can map the kinematics of the human hand with real-time resolution.Main results.While myocontrol algorithms essentially use the temporal envelope of the EMG signal as the only EMG feature, we show that our approach requires the full bandwidth of the signal in the temporal domain for accurate estimates. Spatial filtering however, had a smaller impact and low-order spatial filters may be suitable. Moreover, reducing the number of channels by ablation resulted in large performance losses. The highest accuracy was reached with the highest number of available sensors (n = 320). Importantly and unexpected, our results suggest that increasing the number of channels above those used in this study may further enhance the accuracy in predicting the kinematics of the human hand.Significance.We conclude that full bandwidth high-density EMG systems of hundreds of electrodes are needed for accurate kinematic estimates of the human hand.


Assuntos
Mãos , Músculo Esquelético , Humanos , Fenômenos Biomecânicos , Mãos/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Algoritmos
5.
Appl Physiol Nutr Metab ; 49(4): 547-553, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100752

RESUMO

Several methods are in use to record and analyze neuronal activation, each with specific advantages and challenges. New developments like the decomposition of high-density surface electromyography (HDsEMG) have enabled novel insights into discharge characteristics noninvasively in laboratory settings but face certain challenges to be applied in sports physiology in a broader scope. Several challenges can be accounted for by methodological considerations, others require further technological developments to allow this technology to be used in more applied settings. This paper aims to describe the developments of surface electromyography and identify the challenges and perspectives of HDsEMG in the context of an application in sports physiology. We further discuss methodological possibilities to overcome some of the challenges to investigate specific research questions and identify areas that require further advancements.


Assuntos
Esportes , Eletromiografia/métodos , Exercício Físico , Músculo Esquelético/fisiologia
6.
Pain Ther ; 12(5): 1235-1251, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532960

RESUMO

INTRODUCTION: Chronic refractory pain of various origin occurs in 30-45% of pain patients, and a considerable proportion remains resistant to pharmacological and behavioral therapies, requiring adjunctive neurostimulation therapies. Chronic pain is known to stimulate sympathetic outflow, yet the impact of burst motor cortex stimulation (burstMCS) on objectifiable autonomic cardiovascular parameters in chronic pain remains largely unknown. METHODS: In three patients with chronic pain (2 facial pain/1 post-stroke pain), we compared pain intensity using a visual analog scale (VAS 1-10) and parameters of autonomic cardiovascular modulation at supine rest, during parasympathetic challenge with six cycles per minute of metronomic deep breathing, and during sympathetic challenge (active standing) at baseline and after 4 months of burstMCS compared to age-/gender-matched healthy controls. RESULTS: While two out of three patients were responsive after 4 months of adjunctive burstMCS (defined as pain reduction of > 30%), no differences were found in any of the three patients regarding the R-R intervals of adjacent QRS complexes (RRI, 642 vs. 676 ms) and blood pressure (BP, 139/88 vs. 141/90 mmHg). Under resting conditions, parameters of parasympathetic tone [normalized units of high-frequency oscillations of RRI (RRI-HFnu power) 0.24 vs. 0.38, root-mean-square differences of successive RRI (RRI-RMSSD) 7.7 vs. 14.7 ms], total autonomic cardiac modulation [RRI total power 129.3 vs. 406.2 ms2, standard deviation of RRI (RRI-SD) 11.6 vs. 18.5 ms, coefficient of variation of RRI (RRI-CV) 1.9 vs. 3.7%], and baroreceptor reflex sensitivity (BRS, 1.9 vs. 2.3 ms/mmHg) increased, and parameters of sympathetic tone [normalized units of low-frequency oscillations of RRI (RRI-LFnu power) 0.76 vs. 0.62] and sympatho-vagal balance [ratio of RR-LF to RRI-HF power (RRI-LF/HF ratio) 3.4 vs. 1.9] decreased after 4 months of burstMCS. Low-frequency oscillations of systolic blood pressure (SBP-LF power), a parameter of sympathetic cardiovascular modulation, increased slightly (17.6 vs. 20.4 mmHg2). During parasympathetic stimulation, the expiratory-inspiratory ratio (E/I ratio) increased slightly, while upon sympathetic stimulation, the ratio between the shortest RRI around the 15th heartbeat and the longest RRI around the 30th heartbeat after standing up (RRI 30/15 ratio) remained unchanged. CONCLUSION: Four months of adjunctive burstMCS was associated with an increase in parameters reflecting both total and parasympathetic autonomic modulation and baroreceptor reflex sensitivity. In contrast, sympathetic tone declined in our three patients, suggesting stimulation-associated improvement not only in subjectively perceived VAS pain scores, but also in objectifiable parameters of autonomic cardiovascular modulation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37440382

RESUMO

Surface electromyography (sEMG) is a non-invasive technique that measures the electrical activity generated by the muscles using sensors placed on the skin. It has been widely used in the field of prosthetics and other assistive systems because of the physiological connection between muscle electrical activity and movement dynamics. However, most existing sEMG-based decoding algorithms show a limited number of detectable degrees of freedom that can be proportionally and simultaneously controlled in real-time, which limits the use of EMG in a wide range of applications, including prosthetics and other consumer-level applications (e.g., human/machine interfacing). In this work, we propose a new deep learning method that can decode and map the electrophysiological activity of the forearm muscles into proportional and simultaneous control of > 20 degrees of freedom of the human hand with real-time resolution and with latency within the neuromuscular delays (< 50 ms). We recorded the kinematics of the human hand during grasping, pinching, individual digit movements and three gestures at slow (0.5 Hz) and fast (0.75 Hz) movement speeds in healthy participants. We demonstrate that our neural network can predict the kinematics of the hand in real-time at a constant 32 predictions per second. To achieve this, we employed transfer learning and created a prediction smoothing algorithm for the output of the neural network that reconstructed the full geometry of the hand in three-dimensional Cartesian space in real-time. Our results demonstrate that high-density EMG signals from the forearm muscles contain almost all the information that is needed to predict the kinematics of the human hand. The proposed method has the capability of predicting the full kinematics of the human hand with real-time resolution with immediate translational impact in subjects with motor impairments.


Assuntos
Membros Artificiais , Mãos , Humanos , Eletromiografia/métodos , Mãos/fisiologia , Músculo Esquelético/fisiologia , Algoritmos
8.
J Appl Physiol (1985) ; 135(2): 362-374, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410901

RESUMO

Recent advancements in the analysis of high-density surface electromyography (HDsEMG) have enabled the identification, and tracking, of motor units (MUs) to study muscle activation. This study aimed to evaluate the reliability of MU tracking using two common methods: blind source separation filters and two-dimensional waveform cross-correlation. An experiment design was developed to assess physiological reliability and reliability for a drug intervention known to reduce the discharge rate of motoneurones (cyproheptadine). HDsEMG signals were recorded from tibialis anterior during isometric dorsiflexions to 10, 30, 50, and 70% of maximal voluntary contraction (MVC). MUs were matched within session (2.5 h) using the filter method, and between sessions (7 days) via the waveform method. Both tracking methods demonstrated similar reliability during physiological conditions [e.g., MU discharge: filter intraclass correlation coefficient (ICC): 10% of MVC = 0.76, to 70% of MVC = 0.86; waveform ICC: 10% of MVC = 0.78, to 70% of MVC = 0.91]. Although reliability slightly reduced after the pharmacological intervention, there were no discernible differences in tracking performance (e.g., MU discharge filter ICC: 10% of MVC = 0.73, to 70% of MVC = 0.75; waveform ICC: 10% of MVC = 0.84, to 70% of MVC = 0.85). The poorest reliability typically occurred at higher contraction intensities, which aligned with the greatest variability in MU characteristics. This study confirms that the tracking method may not impact the interpretation of MU data, provided that an appropriate experiment design is used. However, caution should be used when tracking MUs during higher-intensity isometric contractions.NEW & NOTEWORTHY The most direct way to validate longitudinal tracking of motor unit data extracted from high-density surface electromyography is to contrast findings with intramuscular electromyography. We used pharmacology to induce changes in motor unit discharge properties as a noninvasive alternative to validate the reliability of tracking motor units. This study confirmed that the specific tracking method may not impact interpretation of motor unit data at lower contraction intensities; however, caution should be used when tracking units during higher intensities.


Assuntos
Contração Isométrica , Músculo Esquelético , Reprodutibilidade dos Testes , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Contração Muscular
9.
Front Physiol ; 14: 1212453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324379

RESUMO

Introduction: The application of neuromuscular electrical stimulation superimposed on voluntary muscle contractions (NMES+) has demonstrated a considerable potential to enhance or restore muscle function in both healthy and individuals with neurological or orthopedic disorders. Improvements in muscle strength and power have been commonly associated with specific neural adaptations. In this study, we investigated changes in the discharge characteristics of the tibialis anterior motor units, following three acute exercises consisting of NMES+, passive NMES and voluntary isometric contractions alone. Methods: Seventeen young participants participated in the study. High-density surface electromyography was used to record myoelectric activity in the tibialis anterior muscle during trapezoidal force trajectories involving isometric contractions of ankle dorsi flexors with target forces set at 35, 50% and 70% of maximal voluntary isometric contraction (MVIC). From decomposition of the electromyographic signal, motor unit discharge rate, recruitment and derecruitment thresholds were extracted and the input-output gain of the motoneuron pool was estimated. Results: Global discharge rate increased following the isometric condition compared to baseline at 35% MVIC while it increased after all experimental conditions at 50% MVIC target force. Interestingly, at 70% MVIC target force, only NMES + led to greater discharge rate compared to baseline. Recruitment threshold decreased after the isometric condition, although only at 50% MVIC. Input-output gain of the motoneurons of the tibialis anterior muscle was unaltered after the experimental conditions. Discussion: These results indicated that acute exercise involving NMES + induces an increase in motor unit discharge rate, particularly when higher forces are required. This reflects an enhanced neural drive to the muscle and might be strongly related to the distinctive motor fiber recruitment characterizing NMES+.

10.
Brain Commun ; 5(3): fcad122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304792

RESUMO

Following infection with SARS-CoV-2, a substantial minority of people develop lingering after-effects known as 'long COVID'. Fatigue is a common complaint with a substantial impact on daily life, but the neural mechanisms behind post-COVID fatigue remain unclear. We recruited 37 volunteers with self-reported fatigue after a mild COVID infection and carried out a battery of behavioural and neurophysiological tests assessing the central, peripheral and autonomic nervous systems. In comparison with age- and sex-matched volunteers without fatigue (n = 52), we show underactivity in specific cortical circuits, dysregulation of autonomic function and myopathic change in skeletal muscle. Cluster analysis revealed no subgroupings, suggesting post-COVID fatigue is a single entity with individual variation, rather than a small number of distinct syndromes. Based on our analysis, we were also able to exclude dysregulation in sensory feedback circuits and descending neuromodulatory control. These abnormalities on objective tests may aid in the development of novel approaches for disease monitoring.

11.
Dent J (Basel) ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37366671

RESUMO

The aim of this in vitro study was to evaluate thermal effects on implant surfaces using a 445 nm diode laser (Eltech K-Laser Srl, Treviso, Italy) with different power settings and irradiation modalities. Fifteen new implants (Straumann, Basel, Switzerland) were irradiated to evaluate surface alteration. Each implant was divided into two zones: the anterior and posterior areas. The anterior coronal areas were irradiated with a distance of 1 mm between the optical fiber and the implant; the anterior apical ones were irradiated with the fiber in contact with the implant. Instead, the posterior surfaces of all of the implants were not irradiated and used as control surfaces. The protocol comprised two cycles of laser irradiation, lasting 30 s each, with a one-minute pause between them. Different power settings were tested: a 0.5 W pulsed beam (T-on 25 ms; T-off 25 ms), a 2 W continuous beam and a 3 W continuous beam. Lastly, through a scanning electron microscopy (SEM) analysis, dental implants' surfaces were evaluated to investigate surface alterations. No surface alterations were detected using a 0.5 W laser beam with a pulsed mode at a distance of 1 mm. Using powers of irradiation of 2 W and 3 W with a continuous mode at 1 mm from the implant caused damage on the titanium surfaces. After the irradiation protocol was changed to using the fiber in contact with the implant, the surface alterations increased highly compared to the non-contact irradiation modality. The SEM results suggest that a power of irradiation of 0.5 W with a pulsed laser light emission mode, using an inactivated optical fiber placed 1 mm away from the implant, could be used in the treatment of peri-implantitis, since no implant surface alterations were detected.

12.
J Sport Health Sci ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37331508

RESUMO

BACKGROUND: To non-invasively test the hypothesis that (a) short-term lower limb unloading would induce changes in the neural control of force production (based on motor units (MUs) properties) in the vastus lateralis muscle and (b) possible changes are reversed by active recovery (AR). METHODS: Ten young males underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of AR. During ULLS, participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position (15°-20°) and with the contralateral foot raised by an elevated shoe. The AR was based on resistance exercise (leg press and leg extension) and executed at 70% of each participant's 1 repetition maximum, 3 times/week. Maximal voluntary isometric contraction (MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline, after ULLS, and after AR. MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%, 25%, and 50% of the current MVC, and individual MUs were tracked across the 3 data collection points. RESULTS: We identified 1428 unique MUs, and 270 of them (18.9%) were accurately tracked. After ULLS, MVC decreased by -29.77%, MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities (with changes between the 2 variables strongly correlated), while discharge rate was reduced at 10% and 25% but not at 50% MVC. Impaired MVC and MUs properties fully recovered to baseline levels after AR. Similar changes were observed in the pool of total as well as tracked MUs. CONCLUSION: Our novel results demonstrate, non-invasively, that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs, suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold. However, after 21 days of AR, the impaired MUs properties were fully restored to baseline levels, highlighting the plasticity of the components involved in neural control.

13.
Inorg Chem ; 62(50): 20621-20633, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37115633

RESUMO

The biologically triggered reduction of Cu2+ to Cu+ has been postulated as a possible in vivo decomplexation pathway in 64/67Cu-based radiopharmaceuticals. In an attempt to hinder this phenomenon, we have previously developed a family of S-containing polyazamacrocycles based on 12-, 13-, or 14-membered tetraaza rings able to stabilize both oxidation states. However, despite the high thermodynamic stability of the resulting Cu2+/+ complexes, a marked [64Cu]Cu2+ release was detected in human serum, likely as a result of the partially saturated coordination sphere around the copper center. In the present work, a new hexadentate macrocyclic ligand, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), was synthesized by hypothesizing that a smaller macrocyclic backbone could thwart the observed demetalation by fully encapsulating the copper ion. To unveil the role of the S donors in the metal binding, the corresponding alkyl analogue 1,4,7-tris-n-butyl-1,4,7-triazacyclononane (TACN-n-Bu) was considered as comparison. The acid-base properties of the free ligands and the kinetic, thermodynamic, and structural properties of their Cu2+ and Cu+ complexes were investigated in solution and solid (crystal) states through a combination of spectroscopic and electrochemical techniques. The formation of two stable mononuclear species was detected in aqueous solution for both ligands. The pCu2+ value for NO3S at physiological pH was 6 orders of magnitude higher than that computed for TACN-n-Bu, pointing out the significant stabilizing contribution arising from the Cu2+-S interactions. In both the solid state and solution, Cu2+ was fully embedded in the ligand cleft in a hexacoordinated N3S3 environment. Furthermore, NO3S exhibited a remarkable ability to form a stable complex with Cu+ through the involvement of all of the donors in the coordination sphere. Radiolabeling studies evidenced an excellent affinity of NO3S toward [64Cu]Cu2+, as quantitative incorporation was achieved at high apparent molar activity (∼10 MBq/nmol) and under mild conditions (ambient temperature, neutral pH, 10 min reaction time). Human serum stability assays revealed an increased stability of [64Cu][Cu(NO3S)]2+ when compared to the corresponding complexes formed by 12-, 13-, or 14-membered tetraaza rings.

14.
Eur J Appl Physiol ; 123(8): 1671-1684, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36988671

RESUMO

Mental fatigue (MF) does not only affect cognitive but also physical performance. This study aimed to explore the effects of MF on muscle endurance, rate of perceived exertion (RPE), and motor units' activity. Ten healthy males participated in a randomised crossover study. The subjects attended two identical experimental sessions separated by 3 days with the only difference of a cognitive task (incongruent Stroop task [ST]) and a control condition (watching a documentary). Perceived MF and motivation were measured for each session at baseline and after each cognitive task. Four contractions at 20% of maximal voluntary contraction (MVIC) were performed at baseline, after each cognitive and after muscle endurance task while measuring motor units by high-density surface electromyography. Muscle endurance until failure at 50% of MVIC was measured after each cognitive task and the RPE was measured right after failure. ST significantly increased MF (p = 0.001) reduced the motivation (p = 0.008) for the subsequent physical task and also impaired physical performance (p = 0.044). However, estimates of common synaptic inputs and motor unit discharge rates as well as RPE were not affected by MF (p > 0.11). In conclusion, MF impairs muscle endurance and motivation for the physical task but not the neural drive to the muscle at any frequency bands. Although it is physiologically possible for mentally fatigued subjects to generate an optimal neuromuscular function, the altered motivation seems to limit physical performance. Preliminarily, our results suggest that the corticospinal pathways are not affected by MF.


Assuntos
Músculo Esquelético , Resistência Física , Masculino , Humanos , Resistência Física/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Fadiga Mental , Fadiga Muscular/fisiologia
15.
J Neurosci ; 43(16): 2860-2873, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36922028

RESUMO

The purpose of our study was to identify the low-dimensional latent components, defined hereafter as motor unit modes, underlying the discharge rates of the motor units in two knee extensors (vastus medialis and lateralis, eight men) and two hand muscles (first dorsal interossei and thenars, seven men and one woman) during submaximal isometric contractions. Factor analysis identified two independent motor unit modes that captured most of the covariance of the motor unit discharge rates. We found divergent distributions of the motor unit modes for the hand and vastii muscles. On average, 75% of the motor units for the thenar muscles and first dorsal interosseus were strongly correlated with the module for the muscle in which they resided. In contrast, we found a continuous distribution of motor unit modes spanning the two vastii muscle modules. The proportion of the muscle-specific motor unit modes was 60% for vastus medialis and 45% for vastus lateralis. The other motor units were either correlated with both muscle modules (shared inputs) or belonged to the module for the other muscle (15% for vastus lateralis). Moreover, coherence of the discharge rates between motor unit pools was explained by the presence of shared synaptic inputs. In simulations with 480 integrate-and-fire neurons, we demonstrate that factor analysis identifies the motor unit modes with high levels of accuracy. Our results indicate that correlated discharge rates of motor units that comprise motor unit modes arise from at least two independent sources of common input among the motor neurons innervating synergistic muscles.SIGNIFICANCE STATEMENT It has been suggested that the nervous system controls synergistic muscles by projecting common synaptic inputs to the engaged motor neurons. In our study, we reduced the dimensionality of the output produced by pools of synergistic motor neurons innervating the hand and thigh muscles during isometric contractions. We found two neural modules, each representing a different common input, that were each specific for one of the muscles. In the vastii muscles, we found a continuous distribution of motor unit modes spanning the two synergistic muscles. Some of the motor units from the homonymous vastii muscle were controlled by the dominant neural module of the other synergistic muscle. In contrast, we found two distinct neural modules for the hand muscles.


Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Feminino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps , Neurônios Motores/fisiologia , Mãos , Eletromiografia , Contração Muscular
16.
Brain Sci ; 13(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36979302

RESUMO

Despite available, advanced pharmacological and behavioral therapies, refractory chronic facial pain of different origins still poses a therapeutic challenge. In circumstances where there is insufficient responsiveness to pharmacological/behavioral therapies, deep brain stimulation should be considered as a potential effective treatment option. We performed an individual participant data (IPD) meta-analysis including searches on PubMed, Embase, and the Cochrane Library (2000-2022). The primary endpoint was the change in pain intensity (visual analogue scale; VAS) at a defined time-point of ≤3 months post-DBS. In addition, correlation and regression analyses were performed to identify predictive markers (age, duration of pain, frequency, amplitude, intensity, contact configuration, and the DBS target). A total of seven trials consisting of 54 screened patients met the inclusion criteria. DBS significantly reduced the pain levels after 3 months without being related to a specific DBS target, age, contact configuration, stimulation intensity, frequency, amplitude, or chronic pain duration. Adverse events were an infection or lead fracture (19%), stimulation-induced side effects (7%), and three deaths (unrelated to DBS-from cancer progression or a second stroke). Although comparable long-term data are lacking, the current published data indicate that DBS (thalamic and PVG/PAG) effectively suppresses facial pain in the short-term. However, the low-quality evidence, reporting bias, and placebo effects must be considered in future randomized-controlled DBS trials for facial pain.

17.
Med Sci Sports Exerc ; 55(5): 824-836, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729054

RESUMO

PURPOSE: Adjustments in motor unit (MU) discharge properties have been shown after short-term resistance training; however, MU adaptations in long-term resistance-trained (RT) individuals are less clear. Here, we concurrently assessed MU discharge characteristics and MU conduction velocity in long-term RT and untrained (UT) men. METHODS: Motor unit discharge characteristics (discharge rate, recruitment, and derecruitment threshold) and MU conduction velocity were assessed after the decomposition of high-density electromyograms recorded from vastus lateralis (VL) and vastus medialis (VM) of RT (>3 yr; n = 14) and UT ( n = 13) during submaximal and maximal isometric knee extension. RESULTS: Resistance-trained men were on average 42% stronger (maximal voluntary force [MVF], 976.7 ± 85.4 N vs 685.5 ± 123.1 N; P < 0.0001), but exhibited similar relative MU recruitment (VL, 21.3% ± 4.3% vs 21.0% ± 2.3% MVF; VM, 24.5% ± 4.2% vs 22.7% ± 5.3% MVF) and derecruitment thresholds (VL, 20.3% ± 4.3% vs 19.8% ± 2.9% MVF; VM, 24.2% ± 4.8% vs 22.9% ± 3.7% MVF; P ≥ 0.4543). There were also no differences between groups in MU discharge rate at recruitment and derecruitment or at the plateau phase of submaximal contractions (VL, 10.6 ± 1.2 pps vs 10.3 ± 1.5 pps; VM, 10.7 ± 1.6 pps vs 10.8 ± 1.7 pps; P ≥ 0.3028). During maximal contractions of a subsample population (10 RT, 9 UT), MU discharge rate was also similar in RT compared with UT (VL, 21.1 ± 4.1 pps vs 14.0 ± 4.5 pps; VM, 19.5 ± 5.0 pps vs 17.0 ± 6.3 pps; P = 0.7173). Motor unit conduction velocity was greater in RT compared with UT individuals in both VL (4.9 ± 0.5 m·s -1 vs 4.5 ± 0.3 m·s -1 ; P < 0.0013) and VM (4.8 ± 0.5 m·s -1 vs 4.4 ± 0.3 m·s -1 ; P < 0.0073). CONCLUSIONS: Resistance-trained and UT men display similar MU discharge characteristics in the knee extensor muscles during maximal and submaximal contractions. The between-group strength difference is likely explained by superior muscle morphology of RT as suggested by greater MU conduction velocity.


Assuntos
Contração Isométrica , Alta do Paciente , Masculino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Eletromiografia
18.
Dent J (Basel) ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36826173

RESUMO

The aim of the study is to review the literature to observe studies that evaluate the extent of the thermal effect of different laser wavelengths on the histological evaluation of oral soft tissue biopsies. An electronic search for published studies was performed on the PubMed and Scopus databases between July 2020 and November 2022. After the selection process, all the included studies were subjected to quality assessment and data extraction processes. A total of 28 studies met the eligibility criteria. The most studied laser was the carbon dioxide (CO2) laser, followed by the diode laser 940 nm-980 nm. Six studies were focused on each of the Erbium-doped Yttrium Aluminium Garnet (Er:YAG), Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) lasers, and diode lasers of 808 nm and 445 nm. Three studies were for the Potassium Titanyl Phosphate (KTP) laser, and four studies were for the Erbium, Chromium-doped Yttrium, Scandium, Gallium, and Garnet (Er,Cr:YSGG) laser. The quality and bias assessment revealed that almost all the animal studies were at a low risk of bias (RoB) in the considered domains of the used assessment tool except the allocation concealment domain in the selection bias and the blinding domain in the performance bias, where these domains were awarded an unclear or high score in almost all the included animal studies. For clinical studies, the range of the total RoB score in the comparative studies was 14 to 23, while in the non-comparative studies, it was 11 to 15. Almost all the studies concluded that the thermal effect of different laser wavelengths did not hinder the histological diagnosis. This literature review showed some observations. The thermal effect occurred with different wavelengths and parameters and what should be done is to minimize it by better adjusting the laser parameters. The extension of margins during the collection of laser oral biopsies and the use of laser only in non-suspicious lesions are recommended because of the difficulty of the histopathologist to assess the extension and grade of dysplasia at the surgical margins. The comparison of the thermal effect between different studies was impossible due to the presence of methodological heterogeneity.

19.
J Physiol ; 601(6): 1121-1138, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790076

RESUMO

Serotonergic neuromodulation contributes to enhanced voluntary muscle activation. However, it is not known how the likely motoneurone receptor candidate (5-HT2 ) influences the firing rate and activation threshold of motor units (MUs) in humans. The purpose of this study was to determine whether 5-HT2 receptor activity contributes to human MU behaviour during voluntary ramped contractions of differing intensity. High-density surface EMG (HDsEMG) of the tibialis anterior was assessed during ramped isometric dorsiflexions at 10, 30, 50 and 70% of maximal voluntary contraction (MVC). MU characteristics were successfully extracted from HDsEMG of 11 young adults (four female) pre- and post-ingestion of 8 mg cyproheptadine or a placebo. Antagonism of 5-HT2 receptors caused a reduction in MU discharge rate during steady-state muscle activation that was independent of the level of contraction intensity [P < 0.001; estimated mean difference (∆) = 1.06 pulses/s], in addition to an increase in MU derecruitment threshold (P < 0.013, ∆ = 1.23% MVC), without a change in force during MVC (P = 0.652). A reduction in estimates of persistent inward current amplitude was observed at 10% MVC (P < 0.001, ∆ = 0.99 Hz) and 30% MVC (P = 0.003, ∆ = 0.75 Hz) that aligned with 5-HT changes in MU firing behaviour attributable to 5-HT2 antagonism. Overall, these findings indicate that 5-HT2 receptor activity has a role in regulating the discharge rate in populations of spinal motoneurones when performing voluntary contractions. This study provides evidence of a direct link between MU discharge properties, persistent inward current activity and 5-HT2 receptor activity in humans. KEY POINTS: Activation of 5-HT receptors on the soma and dendrites of motoneurones regulates their excitability. Previous work using chlorpromazine and cyproheptadine has demonstrated that the 5-HT2 receptor regulates motoneurone activity in humans with chronic spinal cord injury and non-injured control subjects. It is not known how the 5-HT2 receptor directly influences motor unit (MU) discharge and MU recruitment in larger populations of human motoneurones during voluntary contractions of differing intensity. Despite the absence of change in force during maximal voluntary dorsiflexions, 5-HT2 receptor antagonism caused a reduction in MU discharge rate during submaximal steady-state muscle contraction, in addition to an increase in MU derecruitment threshold, irrespective of the submaximal contraction intensity. Reductions in estimates of persistent inward currents after 5-HT2 receptor antagonism support the viewpoint that the 5-HT2 receptor plays a crucial role in regulating motor activity, whereby a persistent inward current-based mechanism is involved in regulating the excitability of human motoneurones.


Assuntos
Receptores 5-HT2 de Serotonina , Serotonina , Adulto Jovem , Humanos , Feminino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia
20.
Exerc Sport Sci Rev ; 51(1): 34-42, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36123735

RESUMO

The rate at which an individual can develop force during rapid voluntary contractions can be influenced by both the neural drive to a muscle and its intrinsic musculotendinous properties. We hypothesize that the maximal rate of force development across human individuals is mainly attributable to the rate of motor unit recruitment.


Assuntos
Neurônios Motores , Contração Muscular , Humanos , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia , Contração Isométrica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...